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Abstract
A model is presented that describes nonstationary solidification of binary melts or solutions
from a cooled boundary maintained at a time-dependent temperature. Heat and mass transfer
processes are described on the basis of the principles of a mushy layer, which divides pure solid
material and a liquid phase. Nonlinear equations characterizing the dynamics of the phase
transition boundaries are deduced. Approximate analytical solutions of the model under
consideration are constructed. A method for controlling the external temperature at a cooled
wall in order to obtain a required solidification velocity is discussed.

1. Introduction

Directional and bulk crystallization of liquids underlies many
technologies employed in traditional and new industries
(metallurgy, energy, aerospace engineering, electronics) and
describes natural phenomena (formation of ice, solidification
of lava-streams, crystal growth in supersaturated solutions). In
spite of the extended history of the study of crystallization,
many aspects of the physics of this phenomenon remain
unclear. Aspects of the formation of various types of
micro- and macrostructures in solids and liquids, the physical
mechanisms of which remain to a large degree unclear,
are of particular importance. Traditionally the study of
crystallization was and is performed within the framework
of the classical model, leading to the Stefan boundary value
problem. In this approach it is assumed that the liquid and solid
phases are separated by a clearly expressed smooth (planar,
cylindrical, spherical, etc) interface between the phases, heat
transfer occurs by conduction according to the Fourier law
and the velocity of the crystallization front is controlled by
the absorption of heat by the solid phase. The mathematical
formulations corresponding to these physical models belong
to the class of highly nonlinear problems with moving

boundaries. In spite of the appreciable progress attained in
investigating these problems, it has become clear during the
past several years that this approach is limited. This is because
the development of experimental data on materials with
specified properties necessitates the investigation of a number
of new dynamic phenomena typical of the crystallization
process. These phenomena include the formation of cellular
and dendritic structures and the formation of two-phase
(mushy) transition regions that separate the crystal and the
liquid. It has become obvious that further development of
theoretical and experimental studies is impossible without
investigating various instabilities responsible for the formation
of crystals within the liquid and for the inception of complex
structures at the phase interface.

In addition it has been currently recognized that in
order to explain the real structure of solids it is necessary
to take account of the actual supercooling of the liquid
and the consequence of the appearance of metastability
(this phenomenon, among others, is responsible for the
formation of cracks and ‘false bottoms’ in sea-ice). This
requires inclusion in the study of directional crystallization
and the bulk formation of the new phase ahead of the
phase transition boundary (with special attention to particle
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nucleation, kinetics, cluster formation) together with the
propagation of metastability waves into the liquid. Analysis
of available data allows us to single out several fundamental
theoretical and applied problems. Firstly, the colossal
complexity of the physical problems that arise when making
allowance for phase transitions requires the development
of a radically new approach to constructing models of
crystallization, which would include various kinds of nonlinear
and molecular-kinetic phenomena. Important roles are played
by nucleation, fluid flows, convection and evolution of a new
phase in a metastable medium, which in themselves require
the refinement of established approaches and the development
of new ones. Secondly, this gives rise to the need for
mathematical formulation of the corresponding mathematical
models, which requires the establishment of new classes
of crystallization problems and the development of methods
(analytical and numerical) to investigate them.

Transition from metastability to thermodynamic stability
occurs when particles of the new phase grow on fluctuation-
generated nuclei or on impurities serving as crystallization
sites. Whereas at the initial stage of the process it is possible
to regard the individual particles as being independent of
one another, as the transition progresses physical nonlinearity,
caused by the effect of the cluster of the growing particles on
the metastability level of the surrounding matrix phase, i.e. on
the supercooling, becomes substantial. The dynamics of the
variation of the properties of the evolving two-phase (mushy)
mixture at this stage is important not only from a theoretical
but also an applied point of view. This applies particularly to
crystallization from supercooled liquids or from supersaturated
solutions, where quite frequently the bulk of nuclei of the new
phase are supplied by fluctuations, whereas the contribution of
impurities as solidification sites is relatively small [1]. Thus,
this stage controls the size distribution in the products obtained
in certain types of crystallizers and granulators [2, 3]. The
rate of formation of the solid particles has a decisive effect
on the structure of the two-phase zone at the phase interface
and thus also on the physical and mechanical properties of
the produced materials. The available analytic results on the
evolution of the polydisperse phase in pure systems, i.e. in
systems not containing heterogeneous nuclei, pertain either to
the initial or to the concluding stages of phase transition [4, 5].
Studies of the first stage (nucleation), which are usually
based on the kinetic theory of nucleation [6–9], are normally
based on the assumption of independence of individual
nuclei. The second stage (recondensation of particles of
the new phase) is analysed on the basis of the Lifshits–
Slezov model [10, 11], which relies substantially on the
assumption that the appearance of new nuclei can be neglected.
The concluding stage of bulk crystallization was analysed
for cases when one of the particle-coarsening mechanisms—
agglomeration or Ostwald ripening—predominates [10–12].
However, these two mechanisms cannot always be identified
in ‘pure form’ [13, 14]. On the other hand, it is important
to investigate their combined effect for the following reasons.
The supercooling decreases at the concluding stage of bulk
crystallization and tends to zero, whereas the radius of the
critical nucleus increases. As a result, fine crystals vanish,

while large crystals continue to grow. Often, this process
predominates and can be described by means of the Lifshits–
Slezov theory [10, 11] in which it was shown, in part,
that the total number of crystals in the system decreases in
inverse proportion to time, whereas the mean volume of the
crystals increases in direct proportion to time. These results
were verified experimentally [13]. It was suggested that
this situation could be attributed to the effect of competition
for space on the size of the growing crystals [14, 15]. It
was found that agglomeration and Ostwald ripening make a
contribution of the same order of magnitude to the coarsening
of particles [16, 17] at the concluding stage of breakdown
of the metastable state. The interaction between these two
mechanisms was studied recently [18]. This literature survey
on the influence of particles at different stages of crystallization
is certainly incomplete. A more detailed survey is given
in [18].

A number of important contributions to the study of
these problems have been made previously. Ivantsov [19]
has demonstrated that, under certain conditions, a region
of impurity-induced (constitutional) supercooling, i.e. one in
which the temperature is lower than the temperature of the
phase transition, forms in the melt. Subsequent to this, a
relationship between this phenomenon and the structure of
the solid and liquid phases was rather rapidly recognized,
which has brought about intensive studies of the crystallization
dynamics. Mathematical models of crystallization are
complicated by the need to apply boundary conditions at
solid/liquid interfaces which are evolving with time and
whose positions must be found as part of the calculation.
The case of a pure melt being cooled by conduction of
heat to its boundaries is relatively straightforward since the
geometry of the solidification front is similar to that of the
bounding walls [20]. Such so-called ‘Stefan’ problems have
been solved completely in some simple geometries. For
example, solidification from a plane wall [21] and the inward
solidification of cylinders and spheres [22, 23] have been
considered. However, if a pure melt is supercooled (has a
temperature below its freezing point), so that latent heat is
conducted away from the solidification front through the liquid,
then the solidification front becomes extremely convoluted
and forms intricate branching patterns [24]. Snowflakes
provide a common example of this phenomenon. When the
liquid is an alloy (a mixture of two or more components)
such behaviour is commonplace even when the liquid is
not initially supercooled. At present, analytical techniques
cannot follow the evolution of such convolutions far beyond
initial perturbations from a flat interface, though important
results have been obtained through the use of high-speed
computers [25] and boundary-layer models [26]. However, for
many applications, including metallurgy [27], solidification in
magma chambers [28] and the structure of the Earth’s inner
core [29, 30], it is the gross features of the solid–liquid matrix
which form as a result of the convolutions. The matrix or
region of mixed phase is termed a ‘mush’ or ‘mushy layer’. By
treating the mush as a new single phase, and the macroscopic
envelope of the convoluted solid as a phase boundary, it is
necessary to follow the evolution of two-phase boundaries:
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the solid/mush interface and the mush/liquid interface. Hills
et al [31] developed a full set of thermodynamic equations
for a mushy zone, and solved a much-reduced set of them
approximately for the constrained growth of a binary alloy.
Also, these model equations were solved approximately by
Fowler [32]. Recently, exact analytical solutions have been
constructed by Alexandrov [33–35]. Constrained growth, in
which the interfaces are supposed to advance at a prescribed
constant velocity, is applicable to industrial crystal pulling
(Czochralski growth) but not to many natural systems. Further,
Huppert and Worster [36] formulated a simple mathematical
model of the mushy layer based on considerations of global
conservation relationships. Its predictions agreed well with
their observations of ice growing at a plane boundary from
aqueous solutions of various salts. The model is particularly
easy to compute. However, it relies on various assumptions
(particularly that the solid fraction is constant throughout the
mush) whose limits of validity are difficult to assess. More
general sets of equations have been proposed by Worster [37]
based upon simple considerations of local heat and mass
balances. It is known that the diffusion flux determines
the solute gradient in the liquid at a given growth rate
and, consequently, determines the value of constitutional
supercooling. However, since the liquid temperature gradient
is often high, thermodiffusion (the Soret effect) should be
considered as well. In many cases, thermodiffusion may have
a strong dependence on composition. In particular, for dilute
solutions, the thermodiffusion flux is proportional to the mean
concentration [38]. Taking into account the latter, Alexandrov
and Aseev developed a set of equations for a mushy layer with
special attention to the Soret effect and temperature-dependent
diffusivity [39, 40]. Furthermore, natural convection is of
particular interest. This phenomenon complicates the process
and, for example, leads to the formation of ‘chimneys’, which
are narrow, dendrite-free regions that form within the mushy
layer as a result of convection. This striking phenomenon
is known to occur within solidifying alloys [41], where it is
responsible for undesirable material properties; within sea-
ice [42], where it has a significant effect on the ocean
dynamics; within magma chambers [43], where it influences
mineral deposits; and it may occur at the Earth’s inner–outer
core boundary [29, 44]. When the convection is sufficiently
strong, the solute-rich material that flows out of the mushy
layer locally depresses the melting temperature, redissolving
some of the dendrites is notoriously difficult to compute.
The growth of dendrites in metastable surroundings has been
widely studied (see, among others, [45, 46]).

It hardly needs saying that a full survey of the literature
and main results on directional and bulk crystallization is
impossible. Let us also emphasize in conclusion that analytical
results of nonlinear moving boundary problems are found
for steady-state and self-similar processes where governing
equations and boundary conditions are dependent only on a
spatial or scaled variable, that is, they are ordinary differential
equations and boundary conditions. The situation changes
drastically in the case of real solidification processes met in
practical and natural conditions when, generally speaking,
the temperature and concentration fields are functions of

Figure 1. A scheme illustrating the process under consideration.

several time-and space-independent variables. The goal of this
study is to develop the theory of nonstationary binary melt
solidification from a cooled boundary with a mushy layer in
the spirit of [47, 48].

2. Governing equations for a mush

We seek a description of a mushy layer that is independent of
the precise morphology of the growing solid phase. In other
words, we consider the model of a quasiequilibrium mushy
layer when the constitutional supercooling is completely
compensated by the latent heat released by growing crystals
(see, among others, [18, 33–35]). The mush is thus treated
as a continuum, and its physical properties are taken to be
functions of the local volume fraction of solid ϕ. Since
the solid fraction can vary with space and time, the physical
properties of the mush are non-constant. The solid, mushy and
liquid regions are divided by the phase transition boundaries
a(t) and b(t) which move to deeper zones of the solid phase
due to the external cooling of the boundary z = 0 (figure 1).
Function T0(t), which describes time variations in the external
(atmospheric) temperature determined at z = 0, is known.
Let us describe solidification within the framework of the
Stefan-type mushy layer model completely ignoring diffusion
processes. Analysis of the observations shows that, at each
time moment, the temperature profile in solid phase Ts(z, t)
can be approximated by a linear function of spatial coordinate
z (see, for example, [49–51])

Ts(z, t) = T0(t) + C1(t)z, 0 < z < a(t), (1)

where C1(t) is a certain function of time. Based on the same
data, we shall assume that the temperature profile in a two-
phase zone, Tm(z, t), is a linear function of coordinate z

Tm(z, t) = T1(t) + T2(t)z, a(t) < z < b(t). (2)

Here, functions T1(t) and T2(t) are found from the
solution of the problem. Let us especially emphasize that
linearity of temperature Tm(z, t) means not only that the time
of significant extension of the zone is much greater than the
relaxation time of the temperature field, but also that variations
in the solid phase of the zone are small (the latter statement is
discussed in [47], for example).

Taking into account that the diffusion coefficient D is
much smaller than the coefficient of thermal conductivity, we
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shall write the equation of mass balance in a two-phase zone in
the form [52, 53]

∂

∂ t
[(1 − ϕ)Cm] + kCm

∂ϕ

∂ t
= 0, a(t) < z < b(t), (3)

where Cm(z, t) is the impurity concentration and k is the
impurity distribution coefficient (k represents the ratio of the
solute concentration in the solid and liquid phases at the phase
transition boundary). We use expression (3) as the simplest
approximation comprising the effect of impurity accumulation
at the moving phase transition boundary (the key feature for
a constitutionally supercooled mushy layer). Mathematically,
this law follows from the differential equation describing
conservation of impurities if D = 0.

We shall consider that the two-phase zone is in
thermodynamic equilibrium. Therefore, the temperature and
concentration of impurities are related by the liquidus equation

Tm(z, t) = Tp − mCm(z, t), a(t) < z < b(t), (4)

where m is the liquidus slope determined from the phase
diagram and Tp is the freezing point at Cm = 0. We shall
consider the case when the temperature field in the liquid phase
is constant Tb at z > b(t). If this is really the case, the impurity
concentration at the phase transition boundary z = b(t) can be
found from equation (4).

The mass and heat balance and continuity boundary
conditions applied at the two interfaces can be written in the
form (see, among others, [18, 37])

ϕ = ϕa, Ts = Tm, z = a(t), (5)

LV (1 − ϕa)
da

dt
= ks

∂Ts

∂z
− F(ϕa)

∂Tm

∂z
, z = a(t), (6)

Cm
da

dt
(1 − k) + D

∂Cm

∂z
= 0, z = a(t), (7)

ϕ = ϕb, Tm = Tb, z = b(t), (8)

LV ϕb
db

dt
= F(ϕb)

∂Tm

∂z
, z = b(t), (9)

where ϕa and ϕb are the local volume fractions of solid
determined at boundaries a(t) and b(t), respectively, LV is the
latent heat parameter, ks and kl are the thermal conductivities
of the solid and liquid phases. The thermal properties of the
mush are assumed to be volume-fraction-weighted averages of
the properties of the individual phases so that

F(ϕ) = kl(1 − ϕ) + ksϕ. (10)

Expression (10) gives exact results for a laminated
medium when there is no component of the heat flux normal to
the planes of the laminates (the validity of (10) is also discussed
by many authors; see, among others, [37, 54, 55]).

It must be emphasized that the mass balance condition at
z = b(t), analogous to the boundary condition (7), is absent
within the framework of our model. This is due to the fact that
some variations in the temperature gradient at z = b(t) on the
mush side of the interface (constant temperature in the solid)
leads to corresponding variations in the concentration gradient

at z = b(t) and, therefore, to variations in the thickness of the
mushy layer in accordance with the criterion for constitutional
supercooling (this condition holds for the mushy layer and its
boundaries), which is

∂Tm

∂z
= −m

∂Cm

∂z
.

Physically, a decrease in the temperature within a
boundary layer in the solid phase causes the crystallization
process, which is in progress until the local salinity attains its
equilibrium value for a given temperature.

3. Results

Integrating equation (3) and taking into account expres-
sions (2), (4) and (8), we come to the solid phase distribution
within the mushy layer

ϕ(z, t) = 1 − (1 − ϕb)

[
Tp − Tb

Tp − T1(t) − zT2(t)

]α

,

a(t) < z < b(t), (11)

where α = (1 − k)−1. Substitution of equations (1), (2) and (4)
into the boundary conditions (5)–(9) gives

C1(t) = LV

ks
(1 − ϕa)

da

dt
+ F(ϕa)

ks
T2(t), (12)

{T2(t)[b(t) − a(t)] + Tp − Tb}(1 − k)
da

dt
= DT2(t), (13)

T0(t) + C1(t)a(t) = Tb + T2(t)[a(t) − b(t)], (14)

T2(t) = LV ϕb

F(ϕb)

db

dt
, (15)

T1(t) = Tb − b(t)T2(t), (16)

ϕa(t) = 1 − (1 − ϕb)
(Tp − Tb)

α{
Tp − Tb + [b(t) − a(t)] LV ϕb

F(ϕb)
db
dt

}α .

(17)
Substituting (15) into (13) and combining (12), (14)

and (15), we arrive at two nonlinear equations for the
determination of the phase transition boundaries{

LV ϕb

F(ϕb)

db

dt
[b(t) − a(t)] + Tp − Tb

}
(1 − k)

da

dt

= D
LV ϕb

F(ϕb)

db

dt
, (18)

LV

ks
(1−ϕb)(Tp−Tb)

αa(t)

[
da

dt
+ ksϕb

F(ϕb)
(K−1)

db

dt

]

×
{

Tp − Tb + [b(t)−a(t)] LV ϕb

F(ϕb)

db

dt

}−α

= Tb − T0(t) − LV ϕb

F(ϕb)
b(t)

db

dt
, (19)

where K = klk−1
s .

Let us consider the case when

Tp − Tb � LV ϕb

F(ϕb)
[b(t) − a(t)]db

dt
, a(t) � b(t)

4
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Figure 2. Mushy layer coordinates and thickness for set I,
a(0) = 1 cm, b(0) = 2 cm, m = 2.65 ◦C wt%−1, T0 = 1505 ◦C,
ϕb = 0.2.

Table 1. Parameter values used for the two sets of results.

Property Set I Set II Units

k 0.68 0 —
Tp 1529.5 0 ◦C
LV 3398.5 73.37 cal cm−3

D 5 × 10−5 1.2 × 10−5 cm2 s−1

kl 0.1 1.337 × 10−3 cal s−1 cm−1 ◦C−1

ks 0.177 4.848 × 10−3 cal s−1 cm−1 ◦C−1

Tb 1528 −2 ◦C

and the left-hand side of equation (19) is negligible in
comparison with the right-hand side. This situation is typical
for many natural systems such as binary alloys and solutions.
Taking into consideration these strong inequalities, we come
from (18) and (19) to exact analytical expressions for the phase
transition boundaries

a(t) = D

1 − k

∫ t

0

dτ

b(τ )
+ a(0), (20)

b(t) =
{

2F(ϕb)

LV ϕb

∫ t

0
[Tb − T0(τ )] dτ + b2(0)

}1/2

, (21)

where a(0) and b(0) are initial coordinates of interfaces.
Equations (20) and (21) demonstrate the influence of time
dispersion on the dynamics of the process. As was expected,
the law of motion for both boundaries of the zone becomes
self-similar (coordinates a(t) and b(t) are proportional to
the square root of time) at constant temperature T0 [56].
If the external temperature T0(t) undergoes different time
variations, the phase transition boundaries lie between two self-
similar regimes, which correspond to the maximum T0 max and
minimum T0 min surface temperatures observed in experiments.
Thus, for the boundary mushy layer–liquid phase, we have[

2F(ϕb)

LV ϕb
(Tb − T0 max)t + b2(0)

]1/2

� b(t)

�
[

2F(ϕb)

LV ϕb
(Tb − T0 min)t + b2(0)

]1/2

.

Figures 2 and 3 demonstrate a dynamics of interfaces
calculated on the basis of equations (20) and (21) for the Fe–
Ni alloy and the salt solution (physical properties are listed in
table 1). The solid phase–mushy layer interface lags behind the

Figure 3. Mushy layer coordinates and thickness for set II,
a(0) = b(0) = 0, ϕb = 0.5, T0(t) is taken from [49, 57] for buoy 5,
m = 0.052 36 ◦C psu−1. The time origin corresponds to 02:21, day
98 UT. Circles represent experimental data [49, 57].

Figure 4. External temperature and phase transition boundary as
functions of time.

mushy layer–liquid phase interface by virtue of the fact that the
process of formation of the solid phase is hampered within the
mushy layer by a high content of solid (all of the impurities
rejected by the solid phase lattice are initially retained within
the interstices of a layer of solid material).

The nonlinear set of equations (18) and (19) has another
asymptotic solution. Formally equating the left-hand side
of (19) to zero, we obtain

a(t) = Bb(t) + B1, B = ksϕb(1 − K )

F(ϕb)
,

B1 = a(0) − Bb(0).

(22)

Substitution of (22) into (18) gives a quadratic equation
for b(t)

1 − B

2
b2(t) − B1b(t) −

[
D

(1 − k)B
+ (Tb − Tp)F(ϕb)

LV ϕb

]
t

= 1 − B

2
b2(0) − B1b(0). (23)

Expressions (20), (21) and (22), (23) determine two
approximate analytical solutions of equations (18) and (19)
for different values of physical parameters and different
magnitudes of the free parameter ϕb.

In many cases it is important to know how to change
the external temperature T0(t) with the goal of obtaining the
required solidification rate v(t) = db/dt (for example, the goal
is to realize industrial crystal pulling with a constant velocity

5
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Figure 5. Mushy layer thickness as a function of time,
v = 1.952 × 10−3 cm s−1.

v0). Substituting v0 into (21) or equating the right-hand side
of (19) to zero, we get

v0 = F(ϕb)(Tb − T0(0))

LV ϕbb(0)
,

T0(t) = Tb − LV ϕb(v0t + b(0))v0

F(ϕb)
.

Figures 4 and 5 illustrate functions T0(t), b(t) and
b(t)−a(t) describing the solidification scenario from a cooled
boundary with a constant velocity. This approach can be used
in the case of an arbitrary function of v(t). However, we will
not dwell on this point for reasons of space.

Let us emphasize in conclusion that the importance of
this study primarily consists of new analytical results of the
nonlinear nonstationary problem of directional solidification
with a mushy layer from a cooled boundary maintained at a
time-dependent temperature.
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